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Abstract. We give a direst and general prwf of the equality of the energy levels of a pair of 
different quantum problems: the double well and the unstable anharmonic oscillator defined by 
complex translation. The 'resonances' of he hw pmblems are also equal and are the analytic 
conl5"ins of he anharmonic oscillator energy levels. 

1. Introduction 

Let us consider the spherically symmebic anharmonic oscillator Hamiltonian 

H(g. d) =.i(-A + 2') + gZ(z2)' 

in L2(Rd), well defined as a self-adjoint operator with discrete spectrum for any positive 
integer d and positive g. To any eigenvalue Ej,,(O) of H ( 0 ,  d )  is associated a perturbation 
series Ck=O AR( j, n)g=,  where j = d + 21 - 2,l is the angular momentum quantum number, 
and I + 1 and n are positive integers. 

We shift now to the double-well (with linear symmeby breaking) Hamiltonian 

in Lz(R) ,  well defined as a self-adjoint operator with discrete specmm for j real and g 
positive. As above, to any eigenvalue Ej.n(0) of Q(0, j )  is associated a perturbation series 
Ckd &( j ,  n)g" (see Simon [I] and Reed and Simon [Z ] ) .  

Numerical investigations in a particular case ( j  = 0) [3] and a theoretical analysis in the 
general case by Andrianov [4], strongly suggested the surprising identity 

A d j .  4 = (-l)k&(j, 4 
for j + I ,  k + 1 and n positive integers. This identity was partially proved for j = 0 and 
k c 10 by Avron and Seiler [SI. 

GraffiandGrecchiin 1983[6]andCalicetietalin 1988 [7,8]provedtheBorelsummability 
o f c M  &( j ,  n)(ig)" to the eigenvalue Ej."(ig) of Q(ig, j ) ,  where the tilde is used in order 
to distinguish the last operator from the analytic continuation of the original one from real to 
imaginary coupling constant. Since the series Ak(j. n)g* is also Bore1 summable to 
the eigenvalue Ej,#(g) [9], the identity of the series implies the even more surprising identity 

Ej.n(ig) = Ej.n(g)  
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for j + 1, n positive integers and g positive. Let us remark that the analytic continuation of the 
last identity to imaginary g gives the equality of the ‘resonances’ associated to the double-well 
and unstable anharmonic oscillator [6,7]. One of the results of this paper is the direct proof 
of the last identity extended to any positive j + 2. 

The other main result of this paper is the identity of the energy levels of the double well 
with the ones of the (suitable definition of the) unstable anharmonic oscillator. In particular we 
consider the radial anharmonic oscillator Hamiltonian for imaginary coupling constant defined 
by complex translation 

V Buslaeu and V Greeehi 

+ r:) - gzr: 

in L’(R), where r, = r - is, for g positive and j real. Since the Hamiltonian H,(ig, j) is 
well defined as a closed operator with discrete spectrum and its eigenvalues are independent of 
E z 0, we call them kj,”(ig). Calling Ej,.(g) the eigenvalues of Q(g, j ) ,  we have the identity 

Ej.n(g) = &&) 

for g positive, j real and R positive integer. Such identities, extended to complex parameters, 
are some of the few exact results in quantum anharmonic oscillators (see [1,2]). One of 
their first applications is the extension to double-well ‘resonances’ of the distributional Bore1 
summability recently proved for unstable anharmonic oscillator ‘resonances’ [IO]. In order 
to get some physical intuition on the results, we can consider the limit operator fi(i, 1) of 
&(i, 1) as E + 0. This operator is defined by Sommerfeld and antiSommerfeld conditions 
at km respectively (both expressed by the behaviour $(x) - x-’ exp[-i(x3 - x)]), while 
the corresponding ‘resonance’ operator H(i, 1) is defined only by odd parity and Sommerfeld 
conditions at m. The first operator corresponds to the motion of a particle that goes from +cm 
to -m and returns to +m when it reaches -CO, while the ‘resonance’ operator corresponds 
to the motion of a particle that, after some oscilllations, escapes to m in any direction. On the 
other hand, the potential of the unstable unharmonic oscillator on the R axis compaaified to a 
torus is a double-well potential with a well at 03. In this way we can justify the identity of the 
eigenvalues of the unstable anharmonic oscillator and doublewell operator. A similar picture 
applies to the other identity. 

The paper is organized as follows. In section 2 we give the proof of the first eigenvalue 
identity, and in section 3 the proof of the second one. 

2. Identity of ‘resonances’ 

The spherically symmetric anharmonic oscillator is defined by the Hamiltonian (we set g real 
non-negative where it is not specified) 

in L2(Rd), where d is an,integer. An equiyalent operator is obtained by a simple scaling 
transformation *(z) + A r @ ( A z )  for A = 22: 

(2) H ’ ( g ,  d )  = -A + $(z2 + g2(zZ)’) 
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in Lz(Rd). Another equivalent operator is obtained by spherical coordinates and by the 
transform @(z) -+ r $ ( l 4 ) @ ( z ) ,  wherer =@(formally ford = 2): 

d2 .I: - 1 r2 g2r4 +-+- H ( g , d )  = -- + - 
dr2 4r2 4 4 

2 (3) 

in Lz(R+ x Sd-’ ) ,  where 3: = -4Ap-I + (d - Z)’, AM is the LaplaceBeltrami operator 
on the manifold M and Sn is the nldimensional sphere. Since the operator .I: has compact 
resolvent with eigenvalues j z ,  j = d - 2 + U, 1 = 0,1,2, . . ., we can consider the radial 
operator 

rz g2r4 
4 H ( g ,  j )  = -- + - dr’ 4r2 (4) 

in L2(R+) by the boundary condition at the origin : F ( r )  - rhu+’) for j real non-negative. 
Actually, for fixed g. H ( g ,  j )  is an analytic family of closed (positive self-adjoint for real 
parameters) operators in j that can be analytically continued to all real j greater than -2. The 
spectrum is discrete and the eigenvalues E,,&) are real analytic for j real greater than -2. 
(see [21). 

The complex doublewell Hamiltonian 

in L2(R). for j real, is well defined as a closed operator. The operator in (5) is defined as the 
extension of its restriction to the Schwartz space S by the Green fintion for a parameter E 
external to the spectrum of the operator (see [2,6]). The choice of the fundamental solutions 
@km, @‘Em, is fixed by the asymptotic behaviour given by In &.,‘“(x) - -&’ + ifgx3 for 
x + f co  respectively. These behaviours are of Gaussian type and independent of j, so that 
the fundamental functions are analytic in j. The Green function is also analytic in j until the 
parameter E is external to the spectrum, i.e. until the Wronskian of the fundamental functions 
is different from 0. If the spectrum of the operator (5) is not all C as in the case of the stable 
anharmonic oscillators, the set of values of j for which this is true is open and the family 
&ig, j) is analytic in j [Z]., This is true since, as it is easy to show, the Green function is the 
kemel of a Hilbert-Schmidt operator [6]. 

Sincethenumericalrangeoftheoperatorin(5)isall thecomplex planeweshouldprove that 
the spectrum is not the same set. The fundamental solutions @im, @;” satisfy Lz conditions 
in sectors S,, SI respectively, where Sk = ( x  E C ; x  # 0, I arg(x) - i ( 2 k  + 1)xl < iz]. 
So the operator in (5) is in the same class of equivalence Q3,l(ig, j) [I I] of the following 
operator: 

in L’(P), obtained by distortion: @ ( x )  -+ f ( x ) - a @ ( & x ) ) ,  where ( ( x )  = xexp(iq(x)), 
f ( x ) - i  = ~(x)’andr7(x)isofclassCm, (xq(r)‘luniformlysmaU, ~ ( x )  + asx -+ &co. 
It is easy to see that the numerical range of Qd(ig, j )  is contained in a neighbourhood of the 
sector I arg(E)I < # x ,  so that the spectrum does not cover all the complex plane. 

In analogy with the H(ig, d) operator we can define the operator: 

in L*(R x Sd-’ ) ,  d - 1 positive integer. We can state the following results. 
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Theorem 1. 

V Buslaeu and V Grecchi 

Let g be real non-negative and j + 2 positive; we have the following equivalence: 

H ( g ,  j )  - &ig, i ) .  

Corollary 2. Let g be real non-negative and d - 1 positive integer; we have the following 
equivalence: 

H ( g . 4  - &(ig, 4. 
Proof of theorem I .  The equivalence for g = 0 is obvious since, in this case, both operators 
are exactly solvable. Now let g be positive. Since the two operator families are analytic in j ,  
we prove the equivalence for j 2 2 and extend it by analyticity. 

As a first step we make a unitary transformation on the operator H in order to find 
an equivalent operator. Let t = r2 and #( t )  = @(r);  we redefine the wavefunction by 
# -+ t-t(j+l)#(t) and change the space: Lz(R+) + L2(R+, 4tfjdt). The equivalent 
operator obtained is 

dZ d t g2r2 
K ' ( g ,  j) = -4t- -2(2+ j ) -  + - + - 

dtz d? 4 4 (7) 

in L2(R+, i t i ldr) .  
Thesecond unitary transformationthat weuseistheredefinitionofthe wavefuntion&) --t 

#( t )  exp(-Et) together with thechange of space LZ(R+, $ 4  jdr) + LZ(R, ithjexp(-2~t)dt). 
The operator obtained reads 

e 

(8) 

in L2(R+, l t i j  exp(-Zet)dt). 
As a next step we simply change the space and we claim that the same formal operator 

as in (8) but in the new space is equivalent to the operator in (8). The new space is simply 
Lz(R) and the equivalence is proved by the comparison of the boundary conditions in the two 
cases. For any value of E the formal eigenfunctions of the operator in (8) have the behaviour 
at zero 4(t) - c, or # ( t )  - ct-ij, where the first behaviour is consistent with the space of 
( 8 )  and with L*(R), while the second one is inconsistent with both spaces. Also at +CO both 
spaces allow only one and the same behaviour of the two possible ones: In#(t) - r t i g t  2 .  

The behaviour at --oo is irrelevant for the first space and is also always consistent with the 
second one: I#(-t)lz - ~t-iU+~)exp(--2-~t). Hence we have another equivalent operator 

2 

in L ~ ( R ) .  
Now we make one of the main steps: we make the Fourier transform that is unitary 

and changes all the analytic, exponentially decreasing eigenfunctions of K:(g ,  j )  in all the 
exponentially decreasing, analytic eigenfuntions of the new equivalent operator 
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in L2(R) ,  where s, = s - i6. Indeed the eigenfuntions of the last operator in (IO) 
have the following asymptotic behaviour at infinity: In@@) - 2B(s,), where B e )  = 
(i/6gz)(16s3 + 3s), because the other pussible behaviour: @(s) - s;G-') IS ' incompatible ' 

with the space for j 2 1. 
The last main step in the proof is the elimination of the first derivative in the operator in 

(IO) by a change of the space and of the function: @(s) + @($) exp(B(s,)). Thus we obtain 
the equivalent operator 

2 g2 d2 
4 d s 2  

Q:(ig, j )  = -- - - gz( 2 + -&) - 2i jsc 

in L2(R,  exp(2B(sC))ds). Actually the analysis of the possible behaviours of the formal 
eigenfunctions shows the equivalence of the former operator to a new one, Q:(ig. j ) ,  differing 
only in the space which now is Lz(R) .  Changing the variable s + y = (2/g)s and setting 
q = ('&)E, we have the equivalent operator 

in L2(R), where yq = y - iq. As the last step it is sufficient to set q = l/Zg in order to obtain 
the operator &ig, j) . The proof of theorem 1 is finished. 

Corollary 2 is an obvious consequence of theorem 1. 

Remark 1. In this paper, two operators having the same spectrum are defined to be 'equivalent 
operators'. The equivalence of theorem 1 can be extended by analytic continuation in g and j. 
While &ig, j) is an entire family in j ,  the very space condition restricting the family H ( g ,  j )  
to Re(j) > -2. Foncerning the analyticity in g, it is well known (see [I, 21) that by the simple 
scaling x + g-3x we obtain entire families of operators in the new variable 01 = g-f . Indeed 
we have 

H ( g ,  j) -a-' H (01, j) 

where 

d2 j 2  - 1 a2r2 rz 
H a ( ~ ,  j )  = -- + - + - +- dr2 4rz 4 4  

in L2(Rt). By the same scaling on the operator in (12) we get 

Q3(ig, j )  - u-'QF(ff. j )  

where 

in L2(K!), where yn = y - iq, and the last operator is defined as the one given in (5). 
Taking into account remark 1 and theorem 1 we have the following equivalence. 
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Theorem 3. 

V Buslaev and V Grecchi 

H’(a, j )  - Qff@, j )  (14) 
for a, j, 7 complex, Re j z -2, Re q > 0. In particular we have equivalence (14) at (Y = 0 
corresponding t o g  = 00, in agreement with a conjecture of GI& and Grecchi for j = 0 [6]. 

Remark 2. For a, j ,  q red, Q:((Y. j )  is not self-adjoint but it is unitarily equivalent to its 
adjoint. More precisely, if we call T the anti-unitary operator T @ ( y )  = F(y), and P the 
unitary operator P@(y)  = @ ( - y ) ,  we have 

Q ~ ( ( Y ,  j )  = T Q ~ ~ ( ( Y ,  j ) T  = P Q ~ ~ ( ( Y ,  j ) P  = Q?,((Y, - j ) .  

Moreover, we have TPQff(a,  j) = Q?((Y, j ) T P .  

Returning to the g variable on the imaginary axis, we consider the ‘resonance’ operators: 

Corollay 4. Ifg and j are as in theorem 1, we have 

so that the ‘resonances’ are equal: 

for n = 1.2, . . . , where Ej,n(fig) are uniquely related by analytic continuation to Ej,.(g) for 
g small or for g large because of stability results in the two limits (see [ 1.21). 

3. Identity of energy levels 

The unstable anharmonic oscillator has the formal radial Hamiltonian 

H(fig, j )  - d(FgFg, j )  

Ej..(fig) = &,,A?g) 

d2 j 2  - 1 r2 gZr4 
drz 4r2 4 4 

H I ’  (Ig. j )  = -- + - +--- 
- 

for j real and r positive. A possible definition of the operator is given by complex translations. 
In this way we get a family of equivalent operators defined in L2(R). Actually this family of 
operators has a l i t  for vanishing translation only for -2 c j c 2, because of the singular 
behaviour at the origin. The condition at the origin is substituted by a condition at minus 
infinity. The operator obtained is in any case different from the analytic continuation of the 
stable anharmonic oscillator, as defined above, to imaginary coupling constant H(ig, j ) .  As 
is well known, and as recalled above, such an operator is defined by dilations and defines the 
‘resonances’. Let rR = r - iq; we have by complex translation the operator 

dZ j 2  - 1 r2 gZr4 
HR(ig, j) = -- + - + 2 - 2 

dr2 4r,Z 4 4 

in Lz(R), for j real and q positive. We can classify all the operators defined as (16) by a 
regular path (without multiple points) going from infinity to infinity in different Stokes sectors 
keeping the origin to the left (or to the right). The Stokes asymptotic sectors are defined by 
S, = [r E C; r f 0, I arg(r) - (2.4 + l)rr/61 c a/6) in which formal eigenfunctions have the 
asymptotic behaviour + t ( r )  - r-’ exp[zki(gr3 - r/g)], A regular path going from infinity 
in the kth sector to infinity in the hth sector keeping the origin to the left define a class of 
equivalent operators called Hi,(ig, j ) .  In our case the path defined by the line rR = r - iq, 
q > 0 fixed and r varying on all R, goes from the boundary of the sector S4 to the boundary of 
the sector S6 keeping the origin to the left. Our operators in (16) belong to the class H&(ig, j) 

r --t -00, and @=(r) = @;(r,J - r;’ exp[-i(gr: - (l/g)rv)] as r --t 03 (see Sibuya[ll]). 
since the fundamental solutions are @--(r) = @;(r,,) - r-I exp[-i(gr: - (l/g)rR)l as 
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Remark3. The operator defined in (13) depends only on j2, sothat we have the identification 
H,(ig, j )  = H,(ig, -j). The definition of H&, j )  in (16) as a closed operator is of the 
same kind as Q(ig, j) in (5). 

Remark 4. The operator in (16) is complex and not self-adjoint but if we call T the complex 
conjugation operator and P the unitary inversion operator, we have T P H ,  = HnTP so 
that the eigenfunctions of Hn, +"(r), are also eigenfunctions of TP. The adjoint operator 
H,*fig, j) is equivalent to H,(ig, j), and more precisely we have H,*(ig, j )  = H-,(ig, j )  = 
PH,(ig, j ) P  = TH,(ig, j)T. 

Remark 5. For -2 e j e 2 existing, the limit operator fi(ig, j) of Hn as q + 0 and it is 
defined by the limit of the boundary conditions given above and suitable matching conditions 
at the origin. 

We should compare the operator in (16) with the self-adjoint doublewell Hamiltonian 

d2 
Q(g .  j )  = -- + y 2 k y  - 1)' - j 

dy2 

in L2(R) and for j real. 

Theorem 5. For any g, 17 positive and j real we have the equivalence 

Hn(k3 j )  - Q ( g ,  j) 

so that the real eigenvalues are equal: 

&(id = El.&) 

fo rn=  1.2, .... 

(17) 

Pmofoftheorem 5. If we change variable r -+ z = r2 in (IS), we get the formal operator 

z 8222 
d2 d 1 .2 - I + - - -  

~ ~ ( i g ,  j )  = -z- - 2- + - 
dz2 dz 4z2 4 4 

in L2(R, 1/(24'Z)dz). We set z = r2 so that r = is defined on the plane cut on 
the positive half-axis with r = -i for z = -1. The images of the sectors S4, S6 in the 
z plane are given by 04, D6, where D4 = (z E C: z # 0, largz + 4z/31 e z/3} and 
0 6  = [ z  E C; z # 0, I arg I + z/3l < z/3}. In full analogy with the definition of the class 
of operators H&(ig, j )  we define the class Kkh(ig, j )  using the formal operator K3(ig, j )  
and the asymptotic Sectors Dk. We have the equivalence of the two classes H&(ig, j )  and 
Kkh(ig, j )  in the obvious sense of the equivalence of the operators of the two classes. The 
path z = -itn = -it - q.  for 17 fixed positive and t varying in R, goes from the sector 0 4  to 
the sector D6 keeping the origin to the left. Thus, if wechange variable in (16), r -+ t where 
( r  - iq)z = -it - q ,  we obtain the equivalent operator 

d2 d j2- 1 tq ( dt2 dt 4tn 4 '4 K,4(ig, j )  = i -4t,,- - 2- + - - - - 
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in Lz(R, dt/(Z&)), where t0 = t - iv. Redefining the function: $ ( t )  + t ,  
have the equivalent operator 

V Buslaev and V Grecchi 

fUtU 
$ ( t ) ,  we 

in LZ(R, ,$ti"dt). Since the formal eigenfunctions for any value of the parameter E have only 
exponentd. increasing or decreasing, behaviour at 00, we have an equivalent operator 

in LZ(R). Following the method used for the first identity we make the Fourier transform, 
obtaining the equivalent operator 

in Lz(R). The asymptotic behaviour of the fundamental solutions are: at +w, In($+"(s)) - 
Z$(s) + qs, where A(s) = B(-is) = -(1/6g2)(16s3 - 3s), at -w, $-(s) - 
sru-2)exp(qs). Now we redefine the function @(s) + $(s)exp(A(s)), obtaining the 
equivalent operator 

in LZ(R, exp(ZA(s))ds). The fundamental solutions of the operator in (23) do not change if 
we consider the same formal operator in the different space L2(R) .  Indeed at +w we have 
the behaviour Inefm(s) - A(s) + vs and at -w the behaviour In @--(s) - -A@) + qs. 
Also making the change of variables + y = -(2/g)s, we get the equivalent operator 

inL2(R). Bytherealtranslationy + y+I /Zgandthe l i i tq  + 0, wehavetheequivalence 
with the operator Q(g, j) and the proof is finished. 

On the same line as remark 1 and theorem 3 we can extend the equivalence of theorem 5 
tog  large (up to 00) and complex, as follows. 

Theorem 6. 

Hl(a, j )  - Q"(a, j )  - Q6"(a, j )  

for any a, j ,  q complex, Re(q) # 0, where 
dz j 2  - 1 ' r4 

H, (a. j )  = -- + - + a22 - 2 
d r 2  4r,Z 4 4  

( I .  r, = r - iq 

and 

are analytic families of operators with compact resolvent in L2(R). 
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4. Conclusions 

Of course in the same way it is possible to prove the equivalence of other classes of operators 
defined by different pairs of Stokes sectors. 

As a comment on the results we should notice that all the transformations considered 
have a classical meaning and that all the operators are semiclassical in the g parameter. The 
equivalences obtained show the existence of hidden symmetries that could help to have a 
'solution' oftheanharmonicoscillatorproblem. Forthe moment wecansay that it is possible to 
transferto thedouble well thedisbibutional Borelresultsoflhe unstableanharmonicoscillators. 
More direct semiclassical connections of the pairs of problems are also possible. As a last 
comment let us remember the relevance of the anharmonic oscillators for the understanding 
of the interacting quantum field theories. 
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